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1. INTRODUCTION

Quantum Computers are thought of as the very near future device to make computations
easier and faster. The principle on which it will work is the principle of superposition

of quantum states. So, multiple operations can be done simultaneously. There are

certain Algorithms as there are in classical computers, designed to solve problems that

are nearly impossible to solve over thousands of years in remarkably short time spans.

Certain quantum Algorithms and their applications are :

Image source : Quantum Computation and Quantum Information (Nielsen & Chuang).

Such Algorithms can be described using language of Quantum Circuits.

Quantum Circuits are assembly of discrete components which can

describe computational procedures. This will bring algorithms into

phisical existance, techniques can be found to simplify circuits further.

2. Quantum Circuits

Quantum Circuits are built using single and multiple qubit gates.The most

useful gates are Pauli matrices , Hadamard gate, S Gate, π  8 Gate.
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Rotation operators are operators that rotate ψ〉 vector along the respective
axes. These operators are produced by exponentiating pauli matrices.

Rx (θ) ≡ (ⅇ)-iθ2 = cos θ  2 ℐ - i sin θ  2 

=
cos θ  2 -i sin θ  2
-i sin θ  2 cos θ  2

Ry (θ) ≡ (ⅇ)-iθ2 = cos θ  2 ℐ - i sin θ  2 

=
cos θ  2 -sin θ  2
sin θ  2 cos θ  2

Rz (θ) ≡ (ⅇ)-iθ2 = cos θ  2 ℐ - i sin θ  2 

=
(ⅇ)-iθ2 0

0 (ⅇ)iθ2

ⅇiAx = cos (x) ℐ + i sin (x) A

Rn (θ) ≡ (ⅇ)-iθ n

.σ->2

= cos θ  2 ℐ - i sin θ  2 ( nx  + ny  + nz )

here n


= ( nx, ny, nz) is a real unit vector in 3 D.Its a general rotation operator

along an axes' n'.

Every Quantum State can be represented through Bloch Sphere in 3 D, also the operation

of gates can be visualised through these representation.

And thus arbitrary unitary operator can be decomposed as :

U = ⅇiα Rn (β) Rm (γ) Rn (δ) in general

where β, γ and δ are angles from respective axes to the state vector and α is global
phase of rotation.

Proof :

Consider an arbitrary transform :

U =  a b
c d

 Since U is unitary,

U† U = I or  a* c*

b* d*
  a b

c d
 =  1 0

0 1


this implies :

a* a + c* c = 1

b* b + d* d = 1

a* b + c* d = 0

b* a + d* c = 0

Assuming an arbitrary form for a = ⅇ-ia' cos γ  2 then a* = ⅇia' cos γ  2
and -
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1 -ⅇia' cos γ  2 ⅇ-ia' cos γ  2 = c* c

⇒ c* c = 1 - cos2 γ  2
So c = ⅇ-ic' sin γ  2 and our unitary equation becomes -

cos2 γ  2 + sin2 γ  2 = 1

b* b + d* d = 1

ⅇia' cos γ  2.b + ⅇic' sin γ  2.d = 0

b*.ⅇ-ia' cos γ  2 + d*.ⅇ-ic' sin γ  2 = 0

from last two equations it should be clear that b =

-ⅇ-ib' sin γ  2 and d = ⅇ-id' cos γ  2
Now focusing on last two equations - a' - b' - c' = -d'

There are so many solutions with three free variables, but for our purpose

a = (-δ - β)  2 - α
b = (δ - β)  2 - α
c = (-δ + β)  2 - α
d = (δ + β)  2 - α

This makes :

U =
ⅇ-iα ⅇ-iδ2 ⅇ-iβ2 cos γ  2 -ⅇ-iα ⅇiδ2 ⅇ-iβ2 sin γ  2
ⅇ-iα ⅇ-iδ2 ⅇiβ2 sin γ  2 ⅇ-iα ⅇiδ2 ⅇiβ2 cos γ  2

= ⅇ-iα ⅇ-iδ2 ⅇ-iβ2 cos γ  2 -ⅇiδ2 ⅇ-iβ2 sin γ  2
ⅇ-iδ2 ⅇiβ2 sin γ  2 ⅇiδ2 ⅇiβ2 cos γ  2 

= ⅇ-iα ⅇ-iβ2 0

0 ⅇiβ2
ⅇ-iδ2 cos γ  2 -ⅇiδ2 sin γ  2
ⅇ-iδ2 sin γ  2 ⅇiδ2 cos γ  2

= ⅇ-iα ⅇ-iβ2 0

0 ⅇiβ2
cos γ  2 -sin γ  2
sin γ  2 cos γ  2

ⅇ-iδ2 0

0 ⅇiδ2
= ⅇ-iα Rz (β) Ry (γ) Rz (δ)

Also U = ⅇiα ABC and ABC = ℐ as shown below :
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There is also Controlled operations where operation of a gate on qubits is

controlled by one or more other qubits.And there are two qubits one is control

bit and other one is target bit. And the operation of gate will effect either

controll bit or target bit.This depends on the basis in which the state is present.

For mor than one control and target qubits :

say n + k qubits we have andU is a k qubit unitary operator then controlled

operation nU is given by -

n[U] x1 x2 ... xn〉 ψ〉 = x1 x2 ... xn〉 Ux1 x2... xn ψ〉
if all x1 x2 x3 ... xn are control qubits andU will be applied to k qubits

only if all xi' s are 1 if set so or 0 if set so depending upon the choice.

the other way to implement this is -

Circuit identities
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=

{1}[
2
]⊗

2
 ⊗{1}

2
 = 

1
 ⊗

2


=

Rz1
[θ] ⊗ {1}

2
 = {1}

2
 ⊗ Rz1[θ]

=

Rx2
[θ] ⊗ {1}

2
 = {1}

2
 ⊗ Rx2[θ]

=

There can be many more!

3. Measurements

In Circuits it is denoted by a ' meter' symbol, and it is the final element

of the quantum circuits.Quantum systems are in superposition states.Any

measurement on system leads to the collapse of

superposition state into a specific state which makes the

probability of finding resulting state in further measurement 1.

There are 2 principles of quantum circuits -

Principle of deferred measurement : Measurements can always be moved from an

intermediate stage of a quantum circuit to the end of the circuit.If

measurement results are used at any stage of the circuit then classically
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any stage classically

controlled operations can be replaced by conditional quantum operations.

Principle of implicit measurement : Without loss of generality, any

unterminated quantum wires qubits that are not measured at the end
of a quantum circuit may be assumed to be measured.

The second principle can be verified by seeing that reduced density matrix for

1 st qubit in a two qubit system is not affected by measurement i.e.

Tr2[ρ] = Tr2ρ'
where ρ' = P0 ρP0 + P1 ρP1 and ρ is a density matrix of two qubit system.

4. Universal Quantum Gates

A.Two level unitary gates are universal.Two level unitary matrices are

those that acts non - trivially only on two or fewer vector components.

Let U is of the form -

U =
a d g
b e h
c f j

Two level Unitary matrices U1, ..., U3 are such that,

U3 U2 U1 U = ℐ
so, U = U1

† U2
† U3

†

To Construct U1 : if b = 0 then,

U1 ≡
1 0 0
0 1 0
0 0 1

if b ≠ 0 then,

U1 ≡
a*   a 2 + b 2 b*   a 2 + b 2 0

b   a 2 + b 2 -a   a 2 + b 2 0

0 0 1

so

U1 U =
a' d' g'
0 e' h'
c' f' j'

Now, if c' = 0 then ,

U2 ≡
a'* 0 0
0 1 0
0 0 1

if c' ≠ 0 then,

U2 ≡
a'*   a' 2 + c' 2 0 c'*   a' 2 + c' 2
0 1 0

c'   a' 2 + c' 2 0 -a'   a' 2 + c' 2
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so

U2 U1 U =
1 d " g "
0 e " h "
0 f " j "

Since U2, U1, U are unitary, ⇒ U2 U1 U is also Unitary, thus d "=g" = 0,

since the first row of U2 U1 U must have norm 1. Finally , set

U3 =
1 0 0
0 e " * h " *

0 f " * j " *

In general, this way an arbitrary dXd unitary matrix may be written as :

U = V1 ... Vk

where Vi are two level unitary matrices, and d - 1 ≤ k ≤ d - 1 + .. + 1 = d d - 1  2
and d is dimension of the space.

B.Single qubit and CNOT gates are universal.Suppose U is a two level

unitary matrix on an n qubit quantum computer.Say U acts non -trivially on

space spanned by computational basis states s〉 and t and here
s = s1 ... sn and t = t1 ... tn are binary expansions for s & t.U


is nontrivial submatrix

of U ; U
~
can be thought of as a unitary operator on a single qubit.

Gray codes are used to construct circuit implementing U build from single qubit

and CNOT gates.A Gray code connecting s and t is a sequence of binary numbers,

starting with s and concluding with t such that adjacent

members of the list differ in exactly one bit.

example :

s : 101010 t : 110010

Gray code =

1 0 1 0 1 0

1 0 0 0 1 0

1 1 0 0 1 0

Let g1 to gm be the elements of Gray code connecting s & t , with g1 = s,

gm = t. m ≤ n + 1 since s & t can differ atmost at n locations.
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The basic idea is to apply gates to change states as g1〉 → g2〉 → ... → gm-1〉
then to perform Controlled -U


operation with target qubit located at the single bit

where gm-1 & gm differ and then undo the first stage transforming

gm-1〉 → gm-2〉 → ... → g1〉
thus final result is implementation of U.

example :

Let U =

a 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 c
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
b 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 d

, a, b, c, d ϵ complex number set

U
 ≡  a c

b d
 , Notice that U acts non -trivially only on 000 & 111

So, Gray code connecting 000 and 111 =

A B C

0 0 0

0 0 1

0 1 1

1 1 1

1 st two gates shuffle the states so, 000

gets swapped with 011. U

gets applied to 1 st qubit of 011

and 111, conditional on the second and third qubits being in

the state 11.Finnaly, we unshuffle the states, ensuring

that 011 gets swapped back with the state 000.
So, Such U requires at most 2 n - 1 controlled operations to swap g1〉
with gm-1〉 and then back again.These controlled operations can be realized
using O (n) single qubit and CNOT gates.Controlled U


also requires

O (n) gates.So U requires O (n2) single qubit and CNOT gates.According

to A point arbitrary unitary matrix on 2n -dimensional state space of n qubits

may be written as a product of O (22 n) = O (4n) two level unitary operations.

Combining both an arbitrary unitary operation on n qubits can be implemented

using a circuit containing O (n2 4n) single qubit and CNOT gates.

5. Approximating Arbitrary Unitary Gates
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Unitary operations are continuous , so arbitrary unitary operation cannot be

implemented using discrete set of gates.Suppose U and V are two unitary operators

on the same state space.U is the target unitary operator, that we wish to implement

and V is the unitary operator that is actually implemented in practice.So, error

when V is implement instead of U -

E (U, V) ≡ max
ψ

||(U - V) ψ〉||
where the maximum is over all normalized quantum states ψ〉 in the state space.
This measure of error has interpretation that if E (U, V) is small, then any

measurement performed on the state V ψ〉 will give approximately the same

measurement statistics as a measurement of U ψ〉, for any initial state ψ〉
i.e. if M is a POVM element in an arbitrary POVM, and Pu (or Pv) is the

probability of obtaining this outcome if U (or V) were performed with a

starting state ψ〉, then

Pu - Pv ≤ 2 E (U, V) {1}
Proof :

Pu - Pv = 〈ψ U† MU ψ〉 -〈ψ V† MV ψ〉
Let 〉 ≡ U - V ψ〉 , using simple algebra and Cauchy - Schwarz inequality

Pu - Pv = 〈ψ U† M 〉 +〈 MV ψ〉≤ 〈ψ U† M 〉 + 〈 MV ψ〉≤  〉 +  〉≤ 2 E (U, V)

If E U, V becomes significantly small then outcome occures with similar probabilities
regardless of whether U or V were performed.Also if we perform sequence of gates

V1, ..., Vm intended to approximate U1, ..., Um , then the errors add at most

linearly :

E (Um Um-1 ... U1, Vm Vm-1 ... V1) ≤ 
j=1

m

E (Uj, Vj) 2

Proof :

Let m = 2 through induction can be proved for general m.
E (U2 U1, V2 V1) = || (U2 U1 - V2 V1) ψ〉 ||

= ||(U2 U1 -V2 U1 ψ〉 +V2 U1 -V2 V1) ψ〉||
using triangle inequality :

E (U2 U1, V2 V1) ≤||(U2 -V2) U1 ψ〉 || + || V2 (U1 - V1) ψ〉||
≤ E (U2 U1) +E (V2 V1)

1 & 2 are useful as if suppose we wish to perform a quantum circuit m
gates but unfortunately we are only able to approximate jth gate.In order

that the probabilities of different measurement outcomes obtained from the

approximate circuit be within a tolerance > 0 of the correct probabilities

E (Uj, Vj)≤ /(2 m) from 1 & 2.

On Approximating Universal Quantum Computation.nb     11



Universality of Hadamard + Phase + CNOT + π / 8 gates :
2 sets of universal gates -

1 st is standard set - Hadamard + Phase + CNOT + π  8 gates
2 nd is - Hadamard +Phase + CNOT +Toffoli gates

Rn (θ) can be created using just

Hadamard gate and π  8 gate i.e. HTH = Rx (π / 4),

while T only does Rz (π / 4).(Refer exercise 4.14 Neilsen & Chuang.
To Show : Repeated iteration of Rn (θ) can be used to

approximate to arbitrary accuracy any rotation Rn (α).
Proof :

Let δ > 0 be the desired accuracy , N ϵ integer > 2 π / δ
Define θk so that θk ϵ0, 2 π & θk = kθ mod 2 π.
Then pigeon hole principle implies that there are distinct j &

k in range 1, ..., N such that

θk - θj ≤ 2 π / N < δ.
Without loss of generality assume that k > j, so θk-j < δ.Since j ≠ k & θ

is an irrational multiple of 2 π we must have θk-j ≠
0. So θl k-j fills up the interval

0, 2 π  as l is varied, so that adjacent members of
the sequence are no more than δ apart.
It follows that for any ϵ > 0 there exists an n such that

E  Rn (α), Rn (θ)n) < ϵ / 3

E  U, Rn (θ)n1 H Rn (θ)n2 H Rn (θ)n3) < ϵ ,
n1, n2, n3 are positive integers.

i.e. Given U & ϵ it is possible to approximate U within ϵ > 0 circuit using

Hadamard and π  8 gates alone. if there are m gates then, whole circuit can be

approximated to ϵ accuracy by approximating each gate to ϵ / m accuracy by chaining

inequality 2.
How efficient is this to approximate quantum circuits useing discrete set of gates?

Approximating an arbitrary single qubit unitary to within a distance ϵ requires
Ω (21ϵ) gates from discrete set.To approximate m gates requireΩ (m2m/ϵ gates exponential increase.But the sequence of angles θk fills in the
interval 0, 2 π in more or less uniform fashion. So it takesΘ (1 / ϵ) gates

from discrete set.For approximating m gate circuit requiresΘ (m2 / ϵ) gates

to get accuracy of ϵ.Sufficient for many applications!
The Solovay Ketaev theorem implies that arbitrary single qubit gate may be approximated

to an accuracy ϵ using O logc 1  ϵ gates from our discrete set, c is approximately
equal to 2. For m CNOTs and single qubit unitaries to an accuracy ϵ requires O mlogc (m / ϵ)
gates from discrete set.

Polylogarithemic increase, acceptable for virtually all applications.
It is hard to approximate any arbitrary unitary operation in general.There are unitary

operations that require exponentially many operations.
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Say we have g different types of gates and each gate works at most f input qubits

f & g fixed by the computer hardware , suppose our quantum circuit has m gates

starting from computational basis state 0⊗n.For any particular gate in circuit,
at most possible choices -

 n
f
g = O nfg

i.e at most O nfgm different states can be computed using m gates.

We have to optimise this i.e.finding a way to approximate that arbitrary Unitary

operation using minimum number of gates and with higher accuracy.

From Solovay - Kitaev theorem and our universality constructions, an arbitrary unitary

opoeration U on n qubits may be approximated to within a distance ϵ using

O n2 4n logc n2 4n  ϵ gates.This is optimal but unfortunately , it does not address
the problem of determining which families of unitary operations can be computed

efficiently in the quantum circuits model.

5.New ideas and thoughts to work on

1. Doing operations in some other dimention and converting the result back to the

dimension we are working on can lead to the reduced number of operations & gates

significantly.As a sphere in 2 D becomes a circle. But it seems little unclear
that to do that we need quantum gates in that dimension which is not that easy.
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